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1.0 INTRODUCTION

)• uantitative techniques for describing and evaluating software

systems have been developed on a largely ac hoc basis. The need for

control over the software development process has created a software

engineering discipline whose purpose is to establish operational pro-

"cedures for the development of quality software. Unfortunately, tech-

niques for predicting and evaluating software quality and performance are

Just emerging for practical application. Computer science and software

engineering need metrics to help quantify the various aspects of software

development. This report summarizes and explains some metrics from

current literature.

The emphasis of this report is the review of software metrics as

they may be applied to the maintainability, supportability, and testabil-
ity of software.,-' In particular, the metrics suggested by Halstead,

McCabe, and Woodward'et al, are reviewed. However, metrics of a more

general nature are presented for completeness, consideration, and as a

historical background. The following software metrics are summarized.

1) Halstead's Software Sciences

2) McCabe's Complexity Metrics

3) Woodward, Hennel, and Hedley's Knots Complexity

4) Gilb's Software Metrics

5) Boehm, Lipow, and Brown's Software Metrics

6) Thayer's Reliability Metrics

7) McCall's Software Metric Approach (see Section on Boehm)

8) Myers' Extension to McCabe's Complexity
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The emphasis for software metrics discussed here is placed on

module complexity. Recommnendations are included for the near term use of

metrics for software assessment. A subsequent report will address module

strength, cohesion, and inter-connectivity.

S1.1 Software Complexity

The measurement of software complexity has received increased

attention, since software costs have increased in proportion to total

computer system costs. Heretofore, complexity has been a loosely defined

term, and neither Boehm or McCall included it directly among their

metrics for software quality.

Two separate focuses have emerged in studying software com-

plexity: commputational and psychological complexity. Computational

complexity relies on the formal mathematical analysis of such problems as

algorithm efficiency and use of machine resources. In contrast to this

formal analysis, the empirical study of psychological complexity has
emerged from the understanding that software development and maintenance

are largely human activities. Psychological complexity is concerned with

the characteristics of software which affect programmer performance.
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"- .•- 2.0 USES OF SOFTWARE METRICS

The measurement of software complexity is one facet of a larger

effort to measure important software characteristics. Measurements of

software characteristics can provide valuable information throughout the

software life cycle. During development, measurements can be used to predict

the resources which will be required in future phases of a project. For

instance, metrics determined from the detailed design can be used to predict

the amount of effort that will be required to implement and test the code.

Metrics determined from the code can be used to predict the number of errors

that may be found in subsequent testing or the difficulty involved in the

maintainability and supportability of a section of code. Metrics should be

utilized during software testing to assess the complexity and the quality of

software.

Software metrics can be used in at least three ways during the

software lifecycle:

Management Information Tools

As a management tool, metrics provide several types of information

for prediction and assessment. Measureme-nts can be developed for

costing and sizing at the project level and for estimating produc-

tivity. Such metrics allow managers to assess progress, future

problems, and resource requirements. If these metrics can be proven

reliable and valid indicators of development processes, they provide

an excellent source of management vision into a software project.

Measures of Software Quality

Interest grows in creating quantifiable criteria against which a

software product can be judged. An example criteria would be the
minimally acceptable mean time between software failures or the time

required to modify a module. These criteria could be used as either

* acceptance standards by a software acquisition manager or as guidance

3



acceptance standards by a software acquisition manager or as guidance

to potential problems in the code during software validation and

verification.

Feedback to Software Personnel

Software complexity metrics may be used to provide feedback to

programmers about their code. When a section of software grows too

complex, the code may be redesigned until metric values are brought

within acceptable limits or the complexity is justified.

Software metrics may be differentiated between measures of process

and measures of product. Measures of process would include the resource
estimation metrics described as potential management tools. However, measures

of pricess convey little information about the actual state of the software
proauct. Measures of the product represent software characteristics as they

exist at a given time, but do not indicate how the software has evolved into
this state. Measures used for feedback to programmers or to assess quality of

software are measures of product. The latter metrics are of primary concern to

software assessment efforts.
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"3.0 HALSTEAD'S SOFTWARE SCIENCE

The theory of software science as presented by Halstead in his 1977

book, Elements of Software Science[f], is summarized here. Halstead's theory
is probably the best known and the most thoroughly studied measures of

software complexity. A computer program is considered in software science to
be a serieý if tokens which can be classified as either "operators" or
"operandsM . All software science measures are functions of the counts of
these tokens. The oasic units are defined as

n = number of unique operators
n = number of unique operands
N2 = total occurrences of operators
N2 total occurrences of operands.2

Generally, any symbol or keyword in a program that specifies an al-

gorithmic action is considered an operator, while a symbol used to represent.
data is considered an operand. Most punctuation marks are also categorized as

operators. This is illustrated in the example presented below in Section 3.2.
|he The size of the vocabulary of a program, which consists of the number of

unique tokens used to build a program, is defined as:

n = nj + n2.

The length of the program in terms of the total number of tokens used is:

N = Ni + N2"

It should be noted that N is closely related to the traditional

"lines of code" (LOC) measure of program length. For machine language

programs where each line consists of one operator and one operand, N = 2 X

LOC.

Software metrics are defined using these basic terms. Of interest is

another measure for the size of the program, called the volume:

V N x log 2 n.
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The unit of moasurement of volume is the common unit for size--"bits." It is

the actual size of a program in a computer if a uniform binary encoding for

the vocabulary is used. Volume may also be interpreted as the number of

mental comparisons needed to write a program of length N, assuming a binary

search method is used to select a member of the vocabulary of size n. Since

an algorithm may be implemented by many different but equivalent programs, a

program that is minimal in size is said to have the potential volume V*. Any

given program with volume V is considered to be implemented at the program

level L, which is defined by

L = V*/V.

The value of L ranges between zero and one, with L = representing a program

written at the highest possible level (i.e., with minimum size). The inverse

of the program level is termed the difficulty. That is,

S: ilL.

As the volime of an implementation of a program increases, the program level

decreases and the difficulty increases. Thus, programming practices such as

the redundant usage of operands, or the failure to use higher level control

constructs will tend to increase the volume as well as the difficulty.

The effort required to implement a computer program increases as the

size of the program increases. It also takes more effort to implement a

program at a lower level (higher difficulty) when compared with another

equivalent program at a higher level (lower difficulty). Thus the effort in

software science is defined as

E - V/L = D x V.

The unit of measurement of E is "elementary mental discriminations."

A sound theory should have not only an intuitive set of definitions,

but should also contain an intuitive model for which a useful ;et of hypoth-

e!es may be derived and validated. lhe model, although never explicitly

6



"stated by Halstead, is that most programs are produced by concentrating

programmers through a orocess of mental manipulation of the unique operators

and operands. The basic assumption that leads to the hypotheses presented in

the following subsections is an implicit limit on the mental capacity of a

programmer.

3.1 List of Halstead's Metrics

A compendium of HalsZead's metrics is presented in Table 3-1. For

further explanation of the definitions and terms, the reader is referred to

Elements of Software Science by Halstead.

Length Equation
,ý ,V" = n lOg3 n, *ell log, Pit

Volume Metrc
b. V = NVlog, n

Pocential Volume
c. V" = (2 *n,*)logj(2 .n ",I

Boundary Volume
d. V = (2 # I' og9, 'i)Iot ') 1 2 t)

Relations between Operators and Operands
Cl A = (V- - V")/°

e2 B = *" - 2(V" - V*)IV

C4  
.4 = ((nI, )/(n, 2) ))log, (n.1/2)
3 a:* - 2A

Program Level
I'l L V /V
f2•. L" ((n,'/.n,))(ii,/iV.)

t4- L" itt/N

Inellig:nce Count

i ILx V
&2. I ((2/a,)(N, IN 3 (,V, ,v, logo (tv, ai,)

Prograinmmn& Effort
hi ('VIL

T,{11c EquJ{i{on

11 r" - I'll I V (11, log, 11, 11,,r 1011.,; n'llog;z, 142_ 111.

inKtu,,= LeUveI l

it \ LV,

J2 " (L • V) * L %•dLl)J(CCI iolet, S

T, -l l.!."r "
tf ror r quJhicm

/ 4 4 " " J1L.I SlneS A squired

llý (I)) Itt•Jll ) It I o -'cic tI I Jly J#, L.nftllltjIIllooki

i twi' , Ivil (u erro•% ii if n plroI g n,1011111 .111 8 f it ) idI levv ed c1ri ro

Table 3-1. Hastead's Metrics
7

m |m, ml I I I I I.I I I • I-I- I I III



3.2 Description of Operators and Operands

Halstead has defined relationships between the number of operator and

operand courts in an alogrithm to determine several quality factors of the

related software. The units from which Halstead's metrics are defined

(operators kn,1 and operands (n2)) can be determined by an automated basis.

The following example illustrates what is meant by Halstead's operator and

operand count.

Interchange Sort Program

SUBROUTINE SORT (X,N)

DIMENSION X(N)

IF (N.LT.2) RETURN

DO 20 Ir2,N

DO 10 J=,I

IF (X(I).GE.X(J))GO TO 10

SAVE=X(I)

X(Ih=(J)

X(J)=SAVE

10 CONTINUE

20 CONTINUE

RETURN

END



Operator Count and Frequency of Use

Operator Frequency

1 End of statement 7
2 Array subscript 6
3= 5
4 IF() 2
5 O0 2
6, 2
7 End of program 1
8 .LT. I
9 .GE. 1

1l= 10 GO TO 10 1
S.28=N1 I

Operand Count and Frequency of Use

Operand Frequency

I x 6
2 1 5
3 J 4
4 N 2
5 2 2
6 SAVE 2

n2  
7 _ I 1

22-N2
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To determine the programming effort, E, the following steps would be

exercised:

(1) Compute the Volume Metric, V

V = N x log2 n

(2) Determine an estimate of the program level, L

2 n2
L = nTX -q7

(3) Compute Programming Effort, E

E = V/L

3.3 Program Difficulty Used to Support Testability

Of the relationships defined, the predicted difficulty, D, is the one
best correlated to actual data and most useful for test. The formula des-

cribing difficulty may be expressed as:

nl X N2D - 2 -I/L

*Difficulty then, is the product of two ratios, n1 / 2 which increases with the

number of operators used, and N2/n2 which is the average operand useage. The
more times an operand is used, the greater the likelihood for error and the

larger the resulting value of D. Thus as D increases, the error proneness of

the program increases.

An average number of operators can be determined for the system and an operand

useage determined. By using these values, a lower bound of acceptability for

D is determined. If the standard deviation of nI is added to the average

number of operators and D recomputed, the upper limit of 0 is fixed.

10



A study at IBM using 30 program modules quantified 0 for PL/S programs. In

tthese p;'ograms, the average value of n1 was 46, the ratio N2/n2 was epproxi-

mately 5 and the standard deviation of n1 was 18. These values yield upper

and lower limits of D as follows:

0" = 46 X 5 = 115 (lower bound)
2

D2 = 46 + 18 x 5 = 160 (upper bound)

2 2

The boundary conditions above show the points at which the program becomes

suspect due to "error-proneness". For instance, a module with a value D

greater than 160 should have a team review of concepts and implementation. A

module with a value of 0 between 115 and 160 would suggest that the programmer
needs to review his implementation. For D less than 115, the error-proneness

of the program is acceptable.

This static test, when applied to a program prior to test should prove to be a

%Cj valuable tool in predicting maintainability of software. The lower the value

of D, the more maintainable a program will be.

3.4 Overall Evaluation of Software Science

Halstead's software science is appealing, much of the experimental

evidence is convincing, and the psychological foundations are reasonably

sound. It is reported to be the most complete attempt at the quantitative

evaluation of software. However, it should be noted, that it is not complete
since it ignores specific issues, such as choice of mnemonic variable names,

comments, control flow complexity, and data structures. Furthermore, general

issues, such as portability, flexibility, and efficiensy are not addressed.

Halstead's quantitative metrics have had only limited application in

actual practice. However, Software Science shows promise as a quantitative

tool for software reliability, software development and maintenance effcrt
estimation. Halstead's work should be included in testing as a formal measure

" ". of complexity and possibly modularity.
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4.0 MCCABE'S SOFTWARE COMPLEXITY METRICS

Thomas McCabe proposed three metrics in IEEE Transactions on Software
Engineering in December 1976[2]: cyclomatic, essential, and actual com-

plexity. All three are based on a graphical representation of the program
being tested. The first two metrics are calculated from the program graph,

while the third metric is calculated at run time.

4.1 Cyclomatic Complexity

McCabe defines cyclomatic complexity by finding the graph theoretical
"basis set." in graph theory, there are sets of linearly independent program

paths through any program graph. A maximal set of these linearly independent

paths, called a "basis set," can always be found. Intuitively, since the

rrogram graph and any path through the graph can be constructed f'om the basis
set, the size of this basis set should be related to the program complexity.,
From graph theory, the cyclomatic number of the graph. V(G), is given by

i V(G) = e - n + p

for a graph G with number of nodes n, edges e, and connected components p.

For further explanation of the definiton and terms, the reader is referred to
the previous cited reference[2]. The number of linearly independent program

paths through a program graph is V(G) + p, a number McCabe calls the
cyclomatic complexity of the program. Cyclomatic complexity, CV(G),

where

CV(G) e - n + 2p,

can then be calculated from the program-graph. In the graph of Figure 4-1,

e = 18, n = 14, and p = 1.
Thus

V(G) 5 and CV(G) 6.

12



A proper subgraph of a graph G is a collection of nodes and edges

such that, if an edge is included in the subgraph, then both nodes it connects

in the complete graph G must also be in the subgraph. Any flow graph can be

reduced by combining sequential single-entry, single-exit nodes into a single

node. Structured constructs appear in a program graph as proper subgraphs

with only one single-entry node whose entering edges are not in the subgraph,
and with only one single-exit node, whose exiting edges are a iso not included

in the subgraph. For all other nodes, all connecting edges are included in

the subgraph. This single-entry, single-exit subgraph can then be reduced to

a single node.

2)

5f

4.2 Essential Complexity

Essential complexity is a measure of the "unstructuredness" of a

program. The degree of essential complexity depends on the number of

single-entry, single-exit proper subgraphs containing two or more nodes.

13
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"There are many ways in which to form these subgraphs. For a straight-line

graph (no loops and no branches), it is possible to collect the nodes and

edges to form from i to n/2 (n = number of nodes) single-entry, single-exit

subgraphs. An algorithm can be developed to find the minimum number, m, of

such subgraphs in a graph.

The essential complexity EV(G) is defined as

EV(G) = CV(G) - m

where m is the minimum number of subgraphs in a graph.

Figure 4-2 is an example of a program graph with single-entry,

single-exit proper subgraphs identified from such an algorithm. The nodes in

the two proper subgraphs are (7, 8, 9, 10, 11, 12, 13), and (9, 10, 11, 12).

Note that the second subgraph is entirely contained within the first subgraph.

Thus the essential complexity is

EV(G) = CV(G) 2 4
i I i

11

/ , "

3.3

,'--Figure 4-2. Reducible Flow Graph
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The program graph for a program built with structured constructs will

generally be decomposable into subgraphs that contain single entry and a
single exit. The minimum number of such proper subgraphs is CV(G) - 1.

Hence, the essential complexity of a structured program is 1.

4.3 Actual Complexity

Actual complexity, AV, is the number of independent paths actually

executed by a program running on a test data set. AV is always less than or
equal to the cyclomatic complexity and is similar to a path coverage metric.

A testing strategy would be to attempt to drive AV closer to CV(G) by finding
test data which cover more paths or by eliminating decision nodes and reducing

portions of the program to in-line code.

5.0 KNOTS COMPLEXITY MEASURE

The "knots" complexity measure, suggested by Woodward, Hennel, and

Hedley[3], is based on control flow arcs drawn on the actual sequential source
program. Essentially, what is done is to draw arcs from every explicit
control flow operator to the destination of that transfer of control. A
"knot" is defined to occur when one is forced to draw two such directional

arcs that cross each other at some point. It should be clear that the
unrestricted use of GO TO statements allowing the production of the much

feared "spaghetti" code will have a high number of knots.

Knots complexity can be stated more mathematically and without

ambiguity as follows. Let a jump from line a to line b be represented by the
ordered pair of integers (a,b). Define min (a,b) as the line (a or b) that

appears prior to the other. Similarly, the max (a,b) is the line (a,b) that
appears after the other. As an example, if the max (a,b) = a, the jump (a,b)

is a backward branch. Then the jump (p,q) gives rise to a "knot" or crossing
point with respect to jump (a,b) if either

15



1) min(a,b)<min(p,q)<max(a,b)

and max(p,q)>max(a,b)

or

2) min(a,b)<max(p,q)<max(a,b)

and min(p,q)min(a,b)

A measure of software complexity can be obtained by counting the number of

"knots" in a program.

To further illustrate the concept of knots, an example of d FORTRAN

module with no backward branches and containing four knots is presented in

Figure 5-1.

SUBROUTINE KNOTS4 (LES, KEN, RAY)

INTEGER FRED, RAY

IF (LES. EQ. 0) GO TO 10

IF (LES. GT. 0) GO TO 5
FRED 1

GO TO 30

5 FRED = 0

GO TO 30

10 IF (KEN. LT. RAY) GO TO 20

FRED I

GO TO 30II

"20 FRED = 0
-* 30 IF (FRED. NE. I) GO TO 40

RAY = 10

K 4 RETURN

END

Figure 5-1. Module with Four Knots

16



""51 Knots Complexity Using Flow Graphs

The definition of knots is dependent on knowledge of program control
flow jumps in terms of line numbers. However, it is possible to obtain upper
and lower bounds on the number of knots in a program from a directed graph

representation provided we also know the ordering of the nodes to make the
transition from a two-dimensional graph to a one-dimensional program. (It

should be noted that McCabe's Complexity is not dependent on the "location" of
the nodes and paths within the code cf a program.) The inability to extract

the precise number of-knots is to be expected, because information concerning
----- ptly-~cai source text is discarded in constructing a directed graph of a

program.

In order to obtain the lower bound we just apply the definition as it

stands, where now the ordered pairs on integers (a,b) and (p,q) represent the
edges of the directed graph. The strict inequalities in the definition ensure

that no knots arise which involve transfer of control to the next node, i.e.,
edges (a,a+1). This is an example of the transfer of control via natural
succession. Thus, the number obtained in this fashion is a definite lower

bound.

Since the nodes in a directed graph usually represent basic blocks

which may involve several source lines with a unique entry point at the head
of the block (first line), no branching within the block, and a unique exit

point at the tail of the block (last line), there exist situations in which
there is insufficient information to resolve the existence or nonexistence of

a knot. For example the number of knots in a construction such as in Figure
5-2 depends on whether node B corresponds to several lines (1 knot) or just

one line (0 knots). By including all such doubtful cases in our count we can
obtain an upper bound to the number of knots.

17



A A

B B

C B corresponds to B corresponds to

just i line; more than I line;

0 knots I knot

Figure 5-2. Knots Determined from Directed Graph

Figure 5-2 shows the difficulty in determining the number of knots in a

"program from its directed graph representation. The lower and upper bounds

for knots will be shown separated by a colon. In the example above, the

representation would be 0:1.

It is to be noted that calculating a lower bound and an upper bound

in this way provides a complexity interval in a manner resembling Myers'

extension of McCabe's cyclomatic complexity (Section 9).

5.2 Knots and Cyclnmatic Complexity

One uf the advantages the knot count has over the cyclomatic

complexity V(,) is that the number of knots in a progiamn is dependent on the

ordering of the statements in the 'program. Since a directed graph, like a

• /.



"flow chart, is two dimensional, linearization of it must take place in theactual construction of a program. There will be many ways of ordering thenodes of a directed graph to produce equivalent programs and some will be morecomplex than others. This will not be reflected in V(G) since McCabe'smeasure is independent of the ordering. Consider an example of reordering inFigure 5-3 consisting of 5 nodes dnd 6 edges. The cyclomatic complexity is
the same for both graphs.

V(G) = 6 - 5 + 2 = 3.

In the first version, the knots interval is 3"4. However, the secondrestructured (less complex) version has a knots interval of 1:1.

2

3
Can be

RestrUCtured

5
v(G,) 6-5.2 V(G'
Knot $ 1:4 Knot,; I -I

Figure 5-3. An Example Of Reduced Complexity By Restructuring

If,



Other program transformations aimed at code improvement also have the "

desired property of reducing the knot count. An example is included here in

Figures 5-4 and 5-5. It demonstrates once again an advantage of considering

knots rather than the cyclcmatic complexity alone, since v(g) = 3 for both the

original (Figure 5-3) and the undoubtedly less complex version (Figure 5-4)

which has no "phantom" paths.

CALL ABC

IF (ZR) 500, 500, 100
14100 CALL DEF

150 IF (Z3) 200, 200, 550

200 ZG-ZG+1

ZC=O
L

CALL HIJ

300 CALL OPQ

- - - GOTO 2000

500 CONTINUE

Z3=1Sz3:

GOTO 150

550 CONTINUE

CALL RST

ZB=ZB+.

ZC=ZC+I

GOTO 300

4 2000 RETURN

END

Figure 5-4. Nine Knot Example

Figure 5-4 shows version of code having 9 knots. It has two branch creating

statements and so V(G) z 2+1 = 3.

20



CALL ABC
IF (ZR) 500, 500, 100

100 CALL DEF

IF (Z3) 200, 200, 550

200 ZU=ZG+l
S~ZC=O

CALL HIJ

GOTO 600

500 Z3=1

550 CALL RST

ZB=ZB+1

ZC=ZC+1

600 CALL OPQ

RETURN

END

Figure 5-5. Three Knot Example

Figure 5-5 shows the rewritten version of code havirg no "phantom" paths and 3
knots. It still has two branch creating statements and so Y(G) = 2+1 = 3.

5.3 Knots Complexity and Structured Programming

Knots complexity may be used to evaluate structured programming.

Since the number of knots is determined from the program text, the complexity
of the usual constructs in structured programming will depend upon the

language used and the way the constructs are implemented. Consider for

example the implementation in Fortran of the simple choice clause:

if bool then . . . A . . else . . B .

21



The recommended way of writing this in Fortran is given in Figure
5-6a and has I knot. Another way of implementing this construct which doesnot involve negation of the Boolean expression, but results in more compli-
cated control flow, is given in Figure 5-6b and has 2 knots.

-IF (.NOT.BOOL) GO TO 10 IF (BOOL) GO TO 10

-GO TO 20
GO TO 20

L 10 CONTINUE

GO TO 30
20 CONTINU- 20 CONTINUE

I KNOT 30 CONTINUE

(a)

2 KNOTS

(b)

Figure 5-6. Implementation of IF-rHEN-ELSE in Fortran

The use of the Fortran arithinetic IF or computed GOTO to provide a3-way choice results in 3 knots (Figure 5-7). In general, an n-way case
Simuldted using the computed GOTO will have a knot count of:

n-L
k = i = n .X ( - l



The while and repeat until looping constructs can be implemented with zero

knots.

GO TO (10,20,30), NCASE

O CONTINUE

- - GO TO 40

O--V CONTINUE

GO TO 40V-•30 CONTINUE

P40 CONTINUE

Figure 5-7. Example of 3-Way Case Construct

The contribution to the program complexity arising from the use of

structured programming can be removed to provide a measure which reflects the

lack of structure in a program. The reduction of the directed graph can be

performned by replacing the primitives of structured programming by single

nodes. If this process is continued until no further reduction of the graph

is possible and the knots interval of the remaining graph G' is determined,

this will provide a measure of program "unstructuredness." A structured

program will be reducible to a single node with zero knots. This leads to a

definition of the remaining knots as the essential knots of the program and it

can be stated that structu'.d program will have zero essential knots. This is .

analogous to McCabe's calculation of the cyclomatic complexity of the reduced

graph V(G') which equals his essential complexity EV(G) provided each proper

subgraph with unique entry and unique exit is one of the structured pro-
gramming primitives. Note that, 'rom Section 4,

EV(G) - V(G') 1 1 for a structured program.
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6.0 GII.B'S SOFTWARE METRICS

In his book "Software Metrics", Gilb[4j presents a set of basic

software metrics. making no claim as to their completeness. He emphasizes

that each application requires its own concepts or tools and that his text is

intended to provide basic concepts on which the user can build. Gilb builds a

strong and convincing case for precise measurement of software based on the

history of the physical scierces. Most of these metrics are simply ideas of

what might be measured in software evaluation. They are neither definitive

nor substantial. They are inclac~ed here since they present some interesting

possibilities, provide a good compendium of definitions for software metrics,

and is a pioneering effort in the field.

Gilb discusses the software metrics in 6 basic categories:

1) Reliability
2) Flexibility
3) Structure
4) Performance
5) Resources
6) Diverse

These categories are summarized in the following sections.

6.1 Reliability Metrics

Among the metrics Gilb mentions is program reliability metrics, which

he defines as the probability that a given program operates for a certain

period of time without a logical error. The pragmatic measure for program

reliability is one minus the ratio of inputs causing execution failures and

the total number of inputs.

Maintainability (the probability that a failed system will be

restored to operable condition within a specified time) is described as a

function of system design (diagnostic aids, documentation, recovery pro-

cedures), personnel, and support facilities such as diagnostic test tools.
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Repairability is distinguished from maintainability in that all

resources (tools, people, part-) are assumed to be immediately available. It

depends more on the nature of the object being repaired.

The characteristic of serviceability (the ease or difficulty with

which a system can be repaired) is described by Gilb, but it is not considered

quantifiable at present. It is related to repairability.

Availability of a system is computed by dividing the time actually

available by the time that the system should have been available. ýilb

defines intrinsic availability, operational availability, and use avail-

ability.

The attack probability is an expression of the frequency with which

latent problems occur. Examples of attacks are sabo-age, invalid data values,

program logic errors, or even a breakdown of a computer's air conditioning.

"Gilb illustrates a scale for generating a risk measure for a database
in this discussion of the sensitivity characteristic. Related characteristics

include: security probability (the probability of rejecting an attack);

"integrity probabilt (probability of system survival); and the accessibility

(ease of access to a system) or security measure.

The ratio of correct data to all data is given by Gilb as a measure

of the Accuracy (freedom from error). As did Boehm, Brown and Lipow[5], Gilb

states that accuracy is necessary for reliability. Precision is defined as

the degree to which the errors tend to have the same sort of cause. Gilb

measures it by the ratio of the number of actual bugs at the source to the

number of corresponding root bugs observed in total which are caused by source

bugs. - For-example, if one error (bug) causes 100 error messages during a

K specific time, the precision equals 0.01.
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6.2 Flexibility Metrics

Gilb's second category is flexibility metrics which includes:
logical complexity, built-in complexity, open-ended flexibility (adapt-ability), tolerance (of system input variance), generality, portability, and
compatability. For the logical complexity, Gilb proposes a measure of 'binarydecisions' in the logic. Such a measurement may be made manually or auto-
matically. The number of nonnormal exits from a decision statement gives the
absolute logical complexity. Gilb suggests that logical complexity has been
found to be of significance in predicting the cost of computer programs.

Built-in flexibility (the ability of a system to handle different
logical situations) is the ratio of usable complexity to total complexity. Abuilt-in flexibility of one indiates that all complexity is desired. This
measure is applicable in judging the suitability of software packages against
alternatives.

Open ended flexibility (or the measure of the ease with which new
functions can be added to a system) may be grossly measured by counting thelinkages between modules. Whether or not this indicator is meaningful has yet
to be demonstrated.

Tolerance (the ability of a system to withstand a degree of variation
in input without malfunction or rejection) is the number of permissible varia-tions which a system will handle 'sensibly.' Tolerance may be designed into a
system. There is, however, a tradeoff between the cost of tolerance and the
cost of failure due to lack of tolerance.

Gilb's metric of generality (degree to which a system is applicable
to a different environment) varies between 0.0 and 1 (for 100 percent.).

For portability, P(G), (ease with which a system can be moved from
one environment to another) Gilb gives the following measure:
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"P(G) = 1 - EMT)/E(R)
where:

E(T) = resources needed to move a system to a target

environment;

E(R) = resources needed to create the system for the resident

environment.

The portability concept is useful in evaluating the effectiveness ef a system

that is expected to be moved.

Compatability (the measure of portability that can be expected of

systems when they are moved from one given environment to another) must be

measured by average, maximum, and minimum portability measures because only

portability (not compatability) is measurable in practice.

6.3 Structure Metrics

Gilb's structure metrics include: redundancy ratio, hierarchy,

structural complexity (modularity) and simplicity, and distinctness.

The redundancy characteristic is a relative one which is measured by

the ratio of a quantity for the system being measured to the quantity for some

reference system. A redundancy of 1.0 indicates minimum redundancy. An ex-

ample of the redundancy ratio follows. If a code for a series of 1000 objects

is 6 digits 000000-999999 then the digit redundancy is 6/3 or 2.0.

Basic measures of a hierarchy are: depth (number of levels); total
number of elements or nodes in the hierarchy; and breadth (number of elements

at one level). These measures are related to those of structural complexity
which is measured by the number of subsystems or modules and structural sim-

plicity which is the ratio of the number of module linkages to the number of
modules. The usefulness of these concepts has not been demonstrated with

quantitative data. Rather, 'irtuitive' reasoning has been used in the litera-
ture when describing these concepts.
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Gilb defines distinctness as a measure of the failure-point indepen-

dence of one piece of software with that of another piece performing the same

function. The measuring tool is the ratio of the number of bugs in the first

module alone to the number of bugs in the first module which simultaneously

occur in the second. The following classes of errors are purportedly detec-

table and correctable using distinct software: design errors leading to

system errors, resource problems, numeric errors, order code error, timing

errors, data transmission and software errors.

6.4 Performance Metrics

The performance metrics described by Gilb are: efficiency, effec-

tiveness, and transformation.

Efficiency is defined as the ratio of useful work performed to the

total energy expended, while effectiveness is a group measure comparing:

operational reliability, system readiness and design adequacy. Efficiency and

o effectiveness are tradeoffs against each other. For example, it might be very

effective to do triple verification of data registration by operators but it

would be very inefficient.

A transformation measure is the energy or resources needed to convert

data from one state to another. The measurement may be in such terms as

money, time, personnel, electricity, or logical cycles. The measure is impor-

tant to measure the effect (in performance) of changes to algorithms, modules,

etc.

6.5 Resource Metrics

Gilb's resource metrics are: financial datametrics, time resource

datametrics, and space metrics. Financial datametrics include: total system

cost, incremental costs, capital investments, operational costs, and return on

investment. Time resource datametrics include measures of computer time and

personnel time. Space metrics involve the amount of space (bits, words,

characters, etc) for storing data.
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S6.6 Diverse Metrics

Finally, Gilb includes diverse metrics of information, data, evolu-

tion, and stability. Information is the interpretaticn of data, and is not

directly measurable. Data has many possible forms which should be taken into

account when measuring. Bits are useful measures of data when relating to

machine cost. Evolution (the designed characteristic of a system development

which involves stepwise change) may be measured by such indicators as: number

of program instructions changed; percentage of instruction manuals changed;

number of new data elements in a database, etc.

Stability (the measure of lack of perceivable change in spite of an

occurrence which vould normally cause change) is given as a percentage of

change in a system due to a change in environment. An example would be the

percentage of the original number of payoll programs changed due to a change

in tax laws.

6.7 Summary of Gilb's Metrics

This lengthy enumeration of metrics is more provocative than produc-

tive. Gilb's work does open up ideas to fresh possibilities, but the reality

of applying many of these ideas is disheartening. Many of the metrics are

difficult to obtain, and even if we can copute a value, we have no sense of

the range of good values. The lack of independence of the metrics adds to the

confusing complexity and makes it difficult for programmers to predict the

effect of a program change on a group of metrics.
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"7.0 BOEHM'S QUANTITIVE EVALUATION OF S/W QUALITY

Boehm has developed a set of S/W quality characteristics that are

subjectively interrelated to a set of metrics which are quantifiable and thus

can provide a measure of S/W quality. These are best expressed in the form of

a tree.

The elements of the tree, such as:

[MAINTINABIITY • UNDERSTANDABILITY

are related in the direction of the arrows, i.e. if a program is maintainable,

it must be both understandable and testable.

* It would follow, then, that a lower level of primitive concepts exist below

undertandability and testability that are quantifiable (metrics). These are

expressed as:

S7[ONCISENESS

UNDERSTANDABILITY STRUCTUREDNESS

SELF-DESCRIPTIVENESS

CONSISTENCY
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* The entire concept thus becomes:
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judging descriptiveness of material is very difficult. Table 7.1 presents a

summary of metrics and some of their characteristics.

Table 7.1. Evaluation of Metrics (Ref. 5)

''Ease of Complete-
CorTelation Oevelop, ig ness of

Primitive with Potential Quantifi- Automated Auto'matedCharacteristics Definition of Metrics (uality Benefit ability ývaluatlon Evaluation

Device-
Independence01-1 Are computations Independent of cornl- A5 AL + EX

puter word size for achievement of + TI
required precision or storage scheme? I I

01-2 Have mochlne-dependent statemnents A 5 ALN P
been flagged and coamented (e.g..those comp~utations which depend upon

computer hardware capability for ad-
dressing half wrds, bytes, selected
bit patterns, or those which employ
extended source language features)?

Conta $nedness
SC-i Does the program contain a facility A S AL E P

for Initialfring core storage prior
to use?

S 1 Does the prograri contain a facility A 3 *- *_ - -P"
Sfor proper positioning of input/

output devices prior to use?-Accuracy

AR-i Are the numerical mthods used by A S TI
the program consistent with appli-
cation requiremnents? "

TAR- Z Are the accu-acies of program con- "5 AL ! Ti E
stants and tabular values consis-
tent with apolication requirements?

Lompleteness
CP-I Are all program inputs used within 3 AL E C

the program or their presence
exolained by a comment?

U-1 Ar! there no "durnmy, subprograms S 2 AL E Z'referenced?
R-1 Does the orogram have the capabil- A 5 Al. * TI E P

ity to assign default values tonon-specified parameters? _

R-Z Ts input tr.a checked for range AA S AL + TI E P
errors? _

Consistency
CS I Are all specifications of sets of AA 4 AL E Cglobal variables (i.e.. those ap-

pearing in two or more subpro-
grams) identical (e.g.. labeled

C-Z Is the type (e.g.. realV. (nteger.ll L letc.) of a variable consistent
'fcr all uses?

, -.j_ __ _ __ _ _ __ _ _ _ __ _ _
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S..1. Correlation with Software Quality.

A - Very high positive correlation; nearly all programs with a high

metric score will possess the associated characteristic.

AA - High positive correlation; a good majority (say 75-90%) of all

programs with a high metric score will possess the associated
characteristic.

U - Usually (say 50-75%) of all programs with a high metric score

will possess the associated characteristic.

S - Some programs with high metric scores will possess the associ-

ated characteristic.

2. Potential Benefit of Metrics.

5 - Extremely important for metric to have a high score; major

potential troubles otherwise.

4 - Important for metric to have a high score.

3 - Fairly important for metric to have a high score.

2 - Some incremental value for metric to have high score.

I - Slight incremental value for metric to have high score; no real

loss otherwise.
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3. Metric Quantifiability and Feasibility of Automated

Evaluation.

AL - Can be done cost-effectively via an automated algorithm.

CC - Can be done cost-effectively via an automated compliance checker

if given a checklist (Code Auditor is such a tool).

UI - Requires an untrained inspector

TI - Requires a trained inspector

El - Requires an expert inspector

EX - Requires program to be executed

Ease of Developing Automated Evaluation

E - Easy to develop automated algorithm or compliance checker.

M -Moderately difficult to develop automated algorithm or compli-

ance checker.

D - Difficult to develop automated algorithm or compliance checker.

Completeness of Automated Evaluation

C - Algorithm or checker provides total evaluation of metric.

P - Algorithm or checker provides partial evaluation of metric.

I - Algorithm or checker provides inconclusive results.
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Only a few of the candidate metrics are displayed in Table 7-1, and this does
not imply a complete listing of available metrics for measuring the primitives
defined by Boehm.

An expansion of Boehm's work was done by McCall, et al[9], and the list of
quality factors was expanded from 7 to !I (Figure 7-2), which is generally
accepted as complete today.

Ae"u-b eOE ý

wor socloelytha oiyur 7-2 comprison Qualthe Comptaresn pResete here



8.0 THAYER'S SOFTWARE RELIABILITY

Thayer(6] has taken existing S/W reliability models and correlated

the error history of several programs to produce a reliability prediction

using established mathematical models. The data collection is during the test

phases of the software life cycle. Figure 8-1, from Thayer, illustrates the -

software life cycle and where problem reporting and error data is collected.

[ C•-(•aAEMEnS DATA

PROGLEM WAA E cIROT REPORTS

EOjC ARA1TM-

_ _ _ _ _ _.TA__L._ P . O A

CC--*AA'O

t9T$E5'TP•4O101

Figure 8-I. Data Availability Throughout the Software Development Cycle (Ref. 6) .

The concept of evaluation of 5/W error data has evolved to a com-

prehensive short listing that is easy to use and understand. The evolution to

Thayer's list of major error categories is shown in Table 8-1. The first ,

column depicts the number of major error categories and column 2 shows the

total of the detailed error categories.
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Table 8.1. History of Error Category Lists (Ref. 6)

Major OetA I I ed
a tegories Categories J Iteration Cotment s

13 0 Study dona in support a Entirely
of CCIP-85 symptomatic c

IJ 224 Post-CCIP-85 In-house * Greater emphasis
work on cause

e Failed to
recognize code
types

20 164 Interim technical report * Predominately
for Software Reliability symptomatic
Study I

I Recognized
types of codeI Assignment not o

by problem
fixer

Z5 435 Early causa'Ive %ork * Generated by
speculation

e Long with
redundancies -

@ Hard to use

12 79 Final causative list i Comprehensive
out sh~ort

c Easy to use

* Problem fixer
assigns
ca te'or4 es

Thayer's list of 12 major error categories and the number of detailed

categories in each are:

(1) Computational errors - contains 9 detail categories.
(2) Logic errors - contains 7 detail categories.

(3) Data input errors - contains 6 detail categories.

(4) Data handling c.rors - contains l](detail categories.

(5) Data output errors - contains 8 detzil categories.

(6) interface errors - contains 7 detail categories.

(7) Data Definition errors - contains 4 detail categories.



(8) Data base errors - contains 3 detail categories.

(9) Operation errors - contains 6 detail categories.

(10) Other - contains 9 miscellaneous detail categories.

(11) Documentation errors - contains 5 detail categories.

(12) Problem report Rejection - contains 5 detail categories.

The problems reported by Thayer, et a], in data collection and
analysis are equally valid for forms of data collection other than error

history and are well worth notinq:

Table 8.2. Data Collection and Analysis Problems (Ref. 6)

I. Projects, Ohe software. and the data vary considerably and
are not describable in common terminology.

2. Data collection can represent cost, schedule, and manpower
impedi•rnts to software de-elcpment projects. The iaVact
or cost consideratiuns of da.e collection, although real.
are not fully appreciated.

3. Data collection is a lot of work. The tools and techniques
for collecting data are not available.

4. Certain data ite.-s are perlshab'e and must be collected and
analyzed when they becoie available. not after the fact.-

S. Performrs, project management. and even the buyers of soft-
ware are sensitive about providing data that might be used
to adversely evaluato the project by external agencies.

6. Some projects produce data that are classified.

7. Analysis techniques and questions to ask of the data are not
well known.

8. There is no qu.arantee that data will be collected (i.e., no
requirement for projects to collect data).

9. Data accuracy is a chronic question.

i6. Analysis Is often incomplete or inaccurate ,f proper cuarmuni-
cation with project perforr•ers is not established.

11. Contractor and customer representatives of project manage-
ment are not aware of the benefits of data analysis and
therefore tend not to support it.

12. Project structure Is generally not tailored to use available
data (i.e., the rechanism for analyzing data and folding
results back Into the project Is not provided).

13. The fervor of data collection inspires data gathering that
Is non-supportive of the software developn•ent process.

14. Sore data elements reouire protection to preserve the privacy
of the contributor (e.g., cost data).

IS. Data collection is commonly thought to be 'not necessary"
to a properly managed project

16. Project organizational structure and resources vary, making
consistent, multi-project data collection questionable.

17. Definition of which parameters are needed and edaningful to
collect Is in its Infancy.

18. Presently mlipleavnted data collectloo schemes often fall to
gather data In sufficient detail. making results of analysis
questionable.



The models used by Thayer, et al, for evaluation of error data are

A the we ll documented models of Shooman, Jelinski and Moranda, and Schick. The

analysis, though interesting and well done is not applicable to pre-test data

collection and evaluation. Therefore, the use of Thayer's reliability

estimates is very limited.
I

9.0 MYERS' EXTENSION TO McCABE'S CYCLOMATIC COMPLEXITY

Myers reported (SIGPLAN 1977) on an anomaly that occurs when using
different techniques to determine McCabe's cyclomatic complexity. The problem

arises since there are two ways of drawing flow diagrams for compound IF

statements. The following example is used to illustrate Myers' concern:

A) IF (X.EQ.O.) THEN

ELSE

So.i 1 iF (X.EQ.O..AND.Y.GT.O.) THEN

ELSE

C) IF !X.EQ.O.) THEN

IF (Y.GT.O.) THEN

ELSE

The hypothesis is that A is less complex then B and that B is less

- complex than C.

If McCabe's cyclomatic complexity V(G) is computed by diagramming

statements or counting whole predicates as decisions, one gets -

V(A) 2 < V(B) = 2 < V(C) 3

3
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Similarly, if one computes V(G) by counting individual conditions (plus one),

then

V(A) = 2 < V(B) = 3 < V(C) = 3

Neither inequality agrees precisely with the hypothesis, so Myers suggested
. combining the calculations and displaying a complexity interval. Such that,

V(A) = (2,2) < V(B) = (2,3) < V(C) = (3,3)

While this is mathematically appealing, it doesn't appear to be essential for

determining module complexity.

However, the complexity interval is easy to calculate, provides in-

formation regarding programming technique (maintainability), and eliminates
continually justifying the computational choice of V(G). Therefore, it is re-

commended that software analysis tools be extended to include this.

It should be noted that since Halstead's technique (Section 3) is

based on use of operators and operands, the above anomaly is handled without
ambiguity.
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10.0 COMPARISON OP HALSTEAD'S, McCABE'S, AND KNOTS METRICS

The McCabe and knots metrics are based on program control flow.

Neither approach penalizes for in-line code complexity. McCabe's complexity

is based on graph theory for determination of nodes and paths. These flow

graphs are mathematically consistent and are more defensible for test support.

Knots supports the determination of "unstructuredness" quite well and, there-

fore, extends McCabe's cyclomatic complexity. However, McCabe's "Essential

Complexity" which determines subgraphs also addresses the issue of structured

programming. Another advantage of McCabe's over knots is that McCabe's

metrics can be determined without needing the actual module code. Cyclomatic

complexity way be determined from directed flow graphs and Program Design

Languages (PDLs).

Halstead's software science is based on psychological principles of

programmer performance. This approach extends software engineering to the

principles of experimental science. It is not based on control flow theory

but rather the number of unique operators and operands and the total use of

each. Therefore, Halstead does address the issues of in-line code complexity.

Software science handles program flow by investigating the code for the

inclusion of decision and branching statements.

One approach to studying the worth of metrics for flow complexity

issues is to investigate each with respect to accepted methods of flow

simplification. Three such methods are 1) Linearization; 2) Node Splitting;

and 3) Structuring Multiple Exit Loops.

The main issue of linearization is that the same two dimensional flow

graph as shown in Figure 10-1 may be represented by different code (lineari-

zation).
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A

B C/\/

D E I

F G

H

SAME GRAPH => DIFFERENT CODE

Figure 10-1. Two Dimensional Flow-Graph

SThe code produced in different programs may have the same flow graph

but may vary in complexity. McCabe's complexity metric will not show this

difference but Halstead's will. Knots measure will depend on the particular

linearization (Figure 5-3) and also on the implementation language (IF-THEN-

ELSE constructs).

Node splitting refers to the process of producing an executionally

equivalent flow graph G' from a flow graph G, where one node in G appears more

than once in G'. In many instances, such transformations may be used to

produce flow graphs in which each subgraph consists of a single entry arc and

a single exit arc (i.e. structured flow graphs). Figure 10-2 is a simple

illustration of node splitting where node D is repeated in (b).
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.-A

B\ C

D 1i D2

Figure 10-2. Node Splitting

Since node splitting involves code duplication, Halstead's V (and

hence E) increase while node splitting is making the control flow less

complex. However, this may lead to creation of subroutines so that Halstead's

may not be effected greatly. McCabe's cyclomatic complexity is not adverse 1'

affected by the duplication of code.

One flow graph construct which cannot be structured using only node

splitting transformations is that of a loop with different patns from the loop

body to the exit node. There are two general approaches for structuring such

flow graphs and both must involve the use of additional program variables to
"remember" key program variable values at "critical points" in the execution

of the loop body. These values can then be used to determine the paths

through the loop and allow for a single exit. A second apprach involves the

use of Boolean variables.

In the subsequent analyses the restrictive notion :f "multiple exit

loop" in Figure 10-3 serves as the basis for discussion. This case actually

occurs in instances of multiple error exits from a loop. The structured flow

graph in Fi-gure 10-3 makes use of the Boolean variable 'check' to predicate

the iteration.
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B CHECK- T
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CHECK-F--

C

D D

Figure 10-3. Multiple Exits

Here again, the suggested solutions for handling multiple exits
involves increasing the amount of code which increases Halstead's metrics.

In the case of structuring multiple exit loops, there is a small
increase in control flow (McCabe's) complexity. In particular the iHcrease is

fixed at a small level and is not unreasonable. However, the increase in

software effort may be quite large.

With respect to any structuring transformation, Knots metric

indicates that such transformations are advisable. This follows from the fact

that programs which are well structured (in the sense that they are composed

using only IF. .. THEN. .. ELSE and DO WHILE control flow operators) will have
•<=0. Thus, any set of transformations which structure a program must result

in a program with a K value no greater than that of the original program.

Ciiven the rather intense level of debate concerning the utility of such

transformations, this result should evoke some skepticism of the knots

measure.
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Supporting evidence has shown that H~alstead's metrics support the
linearization issue quite well, node splitting somewhat, and multiple exit
loops not very well. McCabe's on the other hand does not support lineariz-

ation well but does support the other two issues. Arguments can be made
against knots in all three issues. It may, therefore, be concluded that

Halstead and McCabe may complement each other in resolution of the above
issues.

A further observation about knots is that programs with arbitrary

amounts of structured transfers will have the same complexity as any straight
line code. This is not the case for Halstead or McCabe. Knots, however, is

the best measure of the occurrence of "spaghetti" code. This is of increas-
ingly less value with the increase and proliferation of languages with

structured constructs.
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11.0 CONCLUSIONS AND RECOMMENDATIONS

Quantitative measures of software quality are still in their infancy.

Halstead's software science ind McCabe's cyclomatic complexity, currently the
best developed software metrics, show promise as predictors for effort

estimation, testing, reliability, and maintenance. Woodward's "knots" control
complexity best evaluates structured programming constructs and augments

McCabe's cyclomatic complexity.

Recent literature has pointed out weaknesses and limitations of each

of these metrics in specific situations without offering viable alternatives.
The lack of vast empirical data to evaluate/substantiate proposed metrics has

hindered the development and acceptance in software engineering. With time,
reliable and useful standard measuring concepts will emerge.

Thp metrics of Halstead and McCabe should he included for software

evaluation. McCabe's cyclomatic complexity has been used with some success.

This technique should be expanded to also determine "essential" complexity to
evaluate str'uctured programming constructs. If this is done, there will be

minimal additional value obtained by Woodward's "knots" metric arid, therefore,
"knots" need not be included. Halstead's and McCabe's metrics, especiatlly

utilized in concert, can help to assess the testability and maintainability of
software to be imolemented. The information required to determine these

metrics will undoubtedly be necessary for or similar to information required
for other metrics that may be proposed in the future.

In summary, the metrics presented here to assess software quality
should be included in a software assessment tool. They are only partially

validated and, therefore, must be used with some care. They are intended to
quantify information that is extremely. subjective. Software type, programming

language, timing constraints, and coding efficiency should always be con-
sidered when assessing software. However, these metrics, especially if used

together, will help determine modules that are overly complex, difficult to
test/maintain, potentially error prone, in need of rework, and possibly

catastrophic to the system under test.
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1.0 INTRODUCI

This report discusses the strength (cohesion) and interconnectivity -

(coupling) of modules and provides recommendations for assessment of software

as a total system.

Unfortunately, there are no currently existing autcmated techniques

to determine module cohesion or coupling. However, this report will discuss

the various aspects and terminology applied to modularity, strength, and

coupling. It is recommended that this terminology be adopted for use in

software assessment. A technique to determine the relative strengths and

coupling of modules is. presented. Furthermore, system level metrics are --

summarized for potential application in futiire test efforts.

I.
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2.0. SOFTWARE STRUCTURE

Software structure is a hierarchical representation which indicates

the relationship hetween elements (called modules) in a software solution to

a problem implicitly defined by requirements analysis. The evolution of

software structure begins with the problem definition. Parts of the problem

are solved by one or more software elements (modules). This process is

symbolically shown in Figure 1 where modules are created to solve different

parts of the problem.

LMM2

PROBLEM SPACE MODULES DEFINED

Figure 1. Evolution of Software Structure
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Software structure represents a program architecture that implies a

hierarchy of control. However, the procedural aspects of software are not

represented by structure. For instance, structure does not represent the

sequence of processes, the repetition of operations, or the occurrance and

P order of decisions.

The structure of a software system may be created by utilizing and

interfacing modules in different ways. All modules could communicate dir-

ectly with a single "controlling" module. This design would require all data

elements to be defined by the controlling -nodule and "ping-pong" in and out

as required. Furthermore, the controlling module will become extremely large

and complex for alI but simple problems. Software systems should be factored

to consoiidate flow of control and decision making modules.

By distributing control in a top-down fashion, design and imple-
mentation are simpified, testability is enhanced, and maintenance can be

approached in a more efficient manner.

It can be seen from Figure 2 that a problem may be solved by many

different software structures. Because each is based on different philo-

sophies, each design method will result in a different structure for the same

set of software requirements. Unfortunately, there is no magic formula to
determine "which is best". However, there are characteristics of a structure

that can be examined and should be considered when assessing software. These
design methodologies are discussed below and should be considered during

software assessment.
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2.1 Srcua Dfnto

M1 ~ M2 M3 M4, M5MM2M3M

Figure 2. Various Software Designs

2.1 Structural Definitions

In order to facilitate discussions on software structure and

recommended metrics, a few simple measures and terms are defined. Each of

the boxes contained in a structure diagram represents one module -- a sep-

*: arately addressable element of a program (e.g., subroutine, function, pro-

i cedure). Figure 3 illustrates various measures of structure. Depth refers

to the number of layers of control (vertically) and width refers to the

overall span of control (horizontally). Fan-out is a measure of the number

of modules that are directly controlled by another module. While fan-in

indicates how many modules directly control a given module.
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DEPTH

FAN IN

SI WIDTH

Figure 3. Measures of Structure

The control relationship among modules may be expressed in the
following way. A module that controls another module is said to be super-
ordinate to it. Conversely, a module controlled by another is said to be
subordinate to the controller. For example, in Figure 3, module A is super-
ordinate to modules B, C, and D and ultimately superordinate to all modules
in the system. Module K is directly subordinate to modules E and F and

ultimately subordinate to modules B and A. The depth of module B is 3 and
the width of module I is 5.
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3.0 MODULARITY

The concept of modularity in computer software has been espoused for

two decades. Myers has stated that "modularity is the single attribute of

software that allows a program to be intellectually manageable". Monolitic

software (i.e., a large program comprised of a single module) cannot be

easily understood. The number of control paths, span of reference, number of

variables, and overall complexity would make maintainability extremely

difficult.

It has been shown in literature that partitioning a software sol-

ution into modules increases understinding and greatly enhances maintain-

ability. It is easier to solve a complex problem if it is reduced to man-

ageable pieces. However, this can be carried only so far. Other factors

besides module size must be considered when developing software. As software.

is partitioned into modules, the requirements to interface information among

the modules increases. We cannot simply make modules smaller and smaller and

expect the total system complexity to decrease. When assessing software at

USAEPG, the concepts of module cohesion (strength) and coupling must be

considered. These concepts are described in Section 4 of this report.

Given the same set of requirements, the greater number of modules

means a smaller module size and, therefore, less cost and effort to create

and maintain each module. However, as noted above, the requirements to

interface the modules increases. Figure 4 illustrates the relationship

between modularity and software cost or effort (development or maintenance).

There is a number of modules somewhere in the region between M1 and M2 that

would result in minimum effort. However, we do not currently have the

necessary sophistication to predict what this number should be.

6
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Figure 4. Modularity and Software Cost

In the sections that follow, some guidelines are presented to help
determine how software should be modularized. However, before discussing

coupling and cohesion, the concepts of abstraction, information hiding, and
module type are presented.

3.1 Abstraction

When a modular solution to a problem is considered, many levels of

abstraction can he posed. At the highest level of abstraction, a solution is
stated in )road terms, using the language of the problem environment. At

lower levels of abstraction, a more procedural orientation is taken.
Problem-oriented terminology is coupled with implementation-oriented term-

inology in an effort to state a solution. Finally, at the lowest level of
abstraction, the solution is stated in a manner that can be directly im-

pl emented.
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Each step in the software engineering process is a refinement in the

level of abstraction of the software solution. During system definition,

software is described as a complete system element in the context of the

entire system. During software planning and requirements analysis, the

software solution is stated in terms "that are familiar in the problem en-

vironment.T  As we move from preliminary to detailed design, the level of

abstraction is reduced. Finally, the lowest level of abstraction is reached

when source code is generated.

The concepts of stepwise refinement and modularity are closely

aligned with abstraction. As the software design evolves, each level of

modules in software structure represents a refinement in the level of ab-

straction of the software. In reality, a factored (Section 2) structure

distributes levels of control and decision making, that is, levels of ab-

straction.

3.2 Information Hiding

The principle of information hiding suggests that modules be
"characterized by design decisions that each hides from all others." In

other words, modules should be specified and designed so that information

(procedure and data) contained within a module are inaccessible to other

modules that have no need for such information.

The term "hiding" implies that effective modularity can be achieved

by defining a set of independent modules that communicate with one another

only that information that is necessary to achieve software function. Ab-

straction helps to define the procedural (or informational) entities that

comprise the software. Hiding defines and enforces access constraints to

both procedural detail within a module and any local data structure used by

the module.

8



-- The use of information hiding as a design criteria for modular

systems provides greatest benefits when modifications are required during

testing and later, during software maintenance. Because most data and pro-

cedure are "hidden" from other parts of the software, inadvertent errors

introduced during modification are less likely to propagate to other loca-

tions within the software.

3.3 Module Types

Abstraction and information hiding are used to define modules within

a software structure. Both of these attributes must be translated into

module operational features that are characterized by time history of in-

corporation, activation mechanism, and pattern ot control.

Time history of incorporation refers to the time at which a module

is included within a source language description of the software. For

example, a module defined as a compile time macro is included as in-line code

by the compiler when an appropriate reference is made. A conventional

subprogram (e.g., a subroutine or procedure) is included through generation

of branch and link code.

Two activation mechanisms are encountered. Conventionally, a module

is invoked by reference (e.g., a "call" statement). However, in real-time

applications, a module may be invoked by interrupt; that is, an outside event

causes a discontinuity in processing that results in passage of control to

another module. Activation mechanics are important because they can affect

software structure.

The pattern of control of a module describes the manner in which it

is executed internally. Conventional modules have a single entry and exit

and are executed sequentially as part of one user task. More sophisticated

patterns of control are sometimes required. For example, a module may be

reentrant. That is, a module is designed so that it does not in any way

modify itself or the local addresses that it references. Therefore, the

module may be used by more than one task concurrently.

9



Within a software structure, a medule may be categorized as:

o A sequential module that is referenced and executed without
apparent interruption by the applications software.

o An incremental module that can be interrupted prior to com-
pletion by applications software and subsequently restarted
at the point of interruption.

o A parallel module that executes simultaneously with another
module in concurrent multiprncessor environments.

Sequential modules are most commonly encountered and are char-

acterized by compile time macros and conventional subprograms -- subroutines,

functions, or procedures. Incremental modules, often called coroutines,

maintain an entry pointer that allows the module to restart at the point of

interruption. Such modules are extremely useful in Interrupt-driven systems.

Parallel modules, sometimes called conroutines, are encountered when high-

speed computation (e.g., pipeline processing) dcmands two or more CPUs

Lj working in paralle-.

A typical control hierarchy (a factored structure) may not be en-

countered when coroutines or conroutines are used. Such nonhierarchical or

homologous structures require special design approaches that are in early

stages of development. Software assessment should include information with

respect to atypical structures.
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4.0 MODULE INDEPENDENCE

The concept of module independence is a direct outgrowth of mod-

ularity and the concepts of abstraction and information hiding. In landmark

papers on software design, Parnas and Wirth allude to refinement techniques

that enhance module independence. Later work by Stevens et al. solidified

the concept.

Module independence is achieved by developing modules with "single-

minded" functions and an "aversion" to excessive interaction with other

modules. Stated another way, we want to design software so that each module

addresses a specific subfunction of requirements and has a simple interface

when viewed from other parts of the software structure.

It is fair to ask why independence is important. Software with

effective modularity, that is, independent modules, is easier to develop

because function may be compartmentalized and interfaces are simplified

"* (consider ramifications when development is conducted by a team). Indepen-

dent modules are easier to maintain (and test) because secondary effects

caused by design and code modification are limited, error propagation is

reduced, and "plug-in" modules are possible. To summarize, module indeper-

dence is a key to good design, and design is the key to soft-dare quality and

software quality test assessment.

Independence is measured using two qualitative criteria: cohesion

and coupling. Cohesior is a measure of the relative functional strength of a

module. Coupling is a measure of the relative interdependence among modules.

4.1 Coupling

Coupling is defined as the degree of interdependence between two

modules. The better the systen, the lower its coupling. Coupling is con-
cerned with how two modules communicate with each other whether it be by

parameters, a global data area or by referring to data inside of the other.

Low or loose coupling means that no module has to worry about the internal

11



workings of the other which makes for simple to understand systems. In

addition, modules with low coupling have fewer connections meaning less

chance for a bug in one module appearing as a symptom in another (ripple

effect). They also minimize the risk of affecting one module due to changing

another.

Five different types of coupling may occur between modules. They

are:

1. data coupling good or loose

2. stamp coupling

3. control coupling

4. common coupling

5. content coupling bad or tight

Two modules may be coupled by m(., than one type of coupling or by

the same type a number of times. If two modules are coupled in more than one

way, their coupling is defined by the worst (tightest) coupling they

exhibit. The following sections describe these types.

4.1.1 Data Coupling

Two modules are data coupled if they communicate by parameters, each

parameter being a single variable, constant, or homogeneous table (a table in

which each entity is of the same type). All that is pas:ed between the

modules Is the necessary data it needs to carry out its ftnctlon. For

example, employee salary rate would not be passed to a module who's function

is to print the employee's address on an envelope. This type of coupling

which is unavoidable and perfectly acceptable, represents the most desirable

type of coupling. Modules A and C of Figure 5 are examples of data coupled

modules.

12



LATA ST UC oUpiPASSE oVIA MOUEA MODULE D
ARGUMENT LIST "
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DATA COUJPLING

Figure 5. Low Coupling

S4.1.2 Stamp Coupling

A group of modules are stamp coupled if they pass a composite piece

of data consisting of a number of fields. Data structures such as records

are a good way of cutting down on excessive data coupling as long as all the

fields have meaning for all modules concerned. However, stamp coupling
should be avoided where possible because it creates unnecessary connections

between modules. Suppose module B only needs a few fields in a record. idy

passing the entire record, B is forced to be aware of the entire structure of

the record and B's chances of inadvertently modifying the record are in-

creased. Figure 5 illustrates stamp coupling between modules A and B.

4.1.3 Control Coupling

When one module passes to another, a piece of information intended

to control the internal logic of the other, they are said to be control

coupled. This piece of information can take the form of control flag or can

be implied in a piece of data. This type of coupling is undesirable because

"the calling module must understand the logic of the subordinate module.

13



Thus, an overall understanding of each module becomes more difficult.

Another undesirable situation that a passed control flag indicates is that a

function has been split between two modules which should in fact be kept in

one.

FLAG

Module A passes flag :o Module C

in Argument List (Data Coupled)

Flag controls logic within Module C:

implies (Control Coupled)

FLAG-

Figure 6. Moderate Coupling

4.1.4 Common Couol ing

Two modules are common coupled if they reference the same global

data area. FORTRAN modules referencing data in a COMMON area and groups of

modules referencing data in an absolute storage location (including regis-

ters) are examples of common coupling. The idea of modularity is degraded by

common coupling because data is not confined to a single module or at most a

small group of modules. Some problems which could arise because of common

coupling are:

14



A bug in any module using the global area may show up in any

other module using the global area.

Modules using global data areas use explicit names to refer-

ence the data, hence the module cannot be used for another

application in which the variable names are different.

Modules and the data it uses become more difficult to under-

stand.,

If a piece of data or its structure within the global data

area changes then all modules which reference that global area

must be modified which is time consuming and, hence, less

maintainable.

It should be noted that if two modules are common coupled, it is

not necessary that one module cal', the other, just the fact that the two

reference the same data area is enough criteria for common coupling (see "-

Figure 7).

GLOBAL ••:

DA TA .....

NAMED COMMON "i

E F

MODULES C, F, AND 0 ARE COMMON COUPLED

MODULES E AND L ARE ALSO COMMON COUPLED

Figure 7. High Coupling

15

Z3b/ AU



4.1.5 Content Coupling

Content coupling pertains mostly to assembly language. It refers to

the situation in which one module directly references the contents of

another. For instance, if module A somehow references data in module B by

using an absolute displacement, the modules are content coupled. Almost any
change to B, or maybe Just recompiling B with a different version of the

compiler will introduce error into the program. Fortunately, most high order
languages offer no way to implement content coupling.

4.1.6 Determining Coupling Type

Data coupling between a calling and called module is recognized when

the parameters of the call contain only simple data types or homogeneous

tables. Stamp coupling is recognized when one or more parameters is a non-
homogeneous composite piece of data such as a record. If one or more of the

parameters passed is used in a condition statement within the called module,

the two modules are control coupled. Common coupling can be detected by
modules according to the global data areas they reference. The modules

within each group are common coupled. If a module cont.iins a branch to a
label which is not defined in the scope of the module itself, it is content

coupled with the module in which the label is defined.

Automatic determination of module coupling by a static analyzer can
be achieved by examining data flow between modules and applying the above

criteria to categorize the coupling type.

4.1.7 Summary of Coupling

The following is a table wtich summarizes each type of coupling and
their specific qualities.

16



SSUSCEPTIBILITY MODULE' S

TO RIPPLE MOIFI- UNDER- USABILITY IN

COUPLING TYPE EFFECT ABILITY STAJ)ABILITY OTHE SYSTE

Data Variable Good Good Good

Stamp Variable Medium Medium Medium

Control Medium Poor Poor Poor

Common Poor Medium Bad Bad

Content Bad Bad Bad Bad

4.2 Cohesion

Modules are made up of elements -- pieces of code which accomplish some

Stask. An instruction, a group of instructions, or a call to another module are

such elements. Cohesion is a measure of the strength of functional associations

of the elements within a module and therefore is synonymous with module stren-

gth. Strong, highly cohesive modules contain elements which are genuinely

S "related. Their independence from information in other unrelated modules and

their unity make for low coupling and easily maintained modules.

There are seven different degrees of cohesion which will be discussed in sub-

sequernt sections. These are in order of strength: functional, sequential,

communicational, procedural, temporal, logical, and coincidental. The first

three, functional, sequential, and communicational represent the most easily

maintained modules, while the lower levels of cohesion, procedural, temporal,

* logical and coincidental are less easily maintained.

SCALE OF COHESION

Type Maintainability Segmentation

Functional Best Black box

Sequential Not-quite-so-
Communicational black box

S - Procedural Gray box
Temporal

LogicAl White or
Coincidental Worst transparent box

17



4.2.1 Functional Cohesion

Those modules which are functionally cohesive are the most easily

maintained modules and have the lowest coupling. They contain elements which

all contribute to one and only one problem-related task. The module may call

other modules in order to solve subproblems of the main task and these may in

turn call other modules, but the calling module is still considered function-

ally cohesive as long as it accomplishes one problem-related function.

"Calculate Net Employee Salary" is an example of one such module with

"Calculate FICA Deductions" a subfunction which it calls.

4.2.2 Sequential Cohesion

The second most cohesive module is one that is sequentially cohes-

ive. Its elements are involved in activities which are carried out in a

specific order so that the result of one is the input data for the next.

"Format and Cross-Validate Record" which has three activities, "format raw
record", "crossvalidate fields in record", and "print error or confirmation

message", is an example of a sequentially cohesive module. Each activity
depends on the result of the previous activity. Like the functionally co-

hesive module, this type also has low coupling but unlike the former, its

activities cannot be summed up as a single independent function and therefore

is not as easily reusable by other programs.

4.2.3 Communicational Cohesion

A communicationally cohesive module is one whose elements make up

activities which use the same data. Like sequential cohesion, its activities
cannot be summed up as one problem-solving function. In contrast to sequen-

tially cohensive modules however, execution of communicationally cohesive

modules activities do not have to be carried out in a specific order. These

modules also maintain clean coupling but ease of maintainability is lost

because attempting to modify one activity will usually affect another erron-

eously. Also if only one activity is really needed, a call to the communi-
cationally cohesive module will result in unnecessary production of data

and/or execution of code.

18



4.2.4 Procedural Cohesion

Previous to this level of cohesion, a module's activities were

strongly related to data. As we cross the boundary from easily maintainable

modules to the less easily maintainable with procedural cohesion, it is

control, not data, that flows from one activity to the next. A procedurally

cohesive module contains elements which are involved with different and

possibly unrelated activities. They are placed in one module because, al-

though they may be unrelated, they must be carried out in some specific

order.

An example is a module called "NEWTRAN' which contains two activities --
"update record on file" and "get next transaction". Usually much data must

be passed to these types of modules leading to poor coupling.

4.2.5 Temporal Cohesion

These modules have elements which are involved with activities that

are related in time. Temporal cohesion is similar to communicational co-

hesion except that each activity must be carried out at the same time instead

of on the same data. It is different from procedural cohesion because exe-

cution order is unimportant. The classic example of such a module is an

initialization module. Coupling is fairly poor and the module is not easily

reused.

4.2.6 Logical Cohesion

A logically cohesive module contains elements that contribute to

activities of the same general category. This type of cohesion differs from

the previously defined types because not all of its activities will neces-

sarily be carried out. The input data to the module determines execution

which leads to tight coupling and possibly unused parameters.

Not only does this type of cohesion make for code which is difficult

to understand, it also violates the principle of ioldependent modules since an

19



-* outside source controls the inner workings of the module. An example of such

a module is one which produces either a sales report, a project status re-

port, or a customer transaction report, depending oa whether the parameter

flag is 1, 2 or 3.

4.2.7 Coincidental Cohesion

Coincidental cohesion is similar to logical cohesion except that the

activities of a coincidentally cohesive module do not even belong to a simi-

lar category as in logically cohesive modules. Organization is not based on

either control or data flow but is dependent on an input flag to tell them

what to do, similar to logical cohesion. It does not carry out one well-

defined function and is difficult to understand. Such modules are rare and

represent the lowest level of cohesion possible.

4.2.8 Determining Module Cohesion

fiFigure 8 depicts a decision tree which deterines the level of co-

hesion of a module. By answering the questions and following the paths

indicated, one will eventually arrive at the level of cohesion for that

module.

4.2.9 Summary of Cohesion

The following table presents a summary of the specific qualities of

each type of cohesion.

CLEANL I NESS USA IL I TY
OF IMPLE- IN OTHER MCODI F. - UNERSTANO-

COHESION LEVEL COUPI I NG MENTATION PROGRAMS ABILITY ABILITY

Functional Good Good Good Good Good

Sequential Good Good Medium Good Good

Communicational Medium Good Poor Medium Medium

Procedural Variable Medium Poor Variable Variable

Temporal Poor Medium Bad Medium Medium

Logical Bad Bad Bad Bad Poor
Coincidental Bad Bad Bad Bad Bad
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YES MODULE DOING
ONE PROBLEM -

RELATED FUNCTION

NO

IACTIVITIES WITHINI

MODpULE? ..

DATA CONTROL FLOWNETR

IMPORTANT? IMPORTANT? SIMILAR?

FNTOA E A NCT PROCEDURAL L C

HIGH ............................................................................. LOW

COHESION SPECTRUM

MORE EASILY MAINTAINED 1LESS EASILY MAINTAINED
Figure 8. Determination of Cohesive Type
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REDUCTION OF PROGRAM COMPLEXITY:

McCABE'S ESSENTIAL COMPLEXITY

1.0 INTRODUCTION

The complexity of the control structure of a module gives a good

measurement of the complexity of the module. The control structure itself

can be represented by its flow graph. Thus, by studying the flow graph, one

can obtain the complexity measure of the module. This is the approach used

by McCabe to compute program complexity as reported in the IEEE Transactions

on Software Engineering, SE-2(4) 1976. This is referred to as the cyclomatic

complexity of the module.

Oftentimes, the complexity of a program can be reduced by parti-

tioning off appropriate portions of the program as subroutines or sub-

procedures. These portions correspond to the 'removable' subgraphs of the

flow graph. Condensing each of these removable subgraphs into a single node
reduces the graph into a simpler graph. McCabe defined the complexity of the

reduced graph as the essential complexity of the program. It is the purpose

of this report to present algorithms for identifying removable subgraphs of a

flow graph and describe a method to compute McCabe's essential complexity.

The issue of identifying removable subgraphs is discussed below.

First, an overview of the approach is presented. Secondly, the recommended
method For determining the subgraphs is discussed in detail. Finally, a high

level Program Design Language representation of the algorithm is presented.
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2.0 OVERVIEW OF THE APPROACH

The removable subgraphs can be determined by successive elimination.

First, a coarse criterion is used to find all subgraphs that are likely

candidates for removal, and then apply a series of discriminatory criteria to

rule out subgraphs that are not truly removable. The following is a summary

of the procedure. An example is given at the end to illustrate the pro-

cedure:

Step 1. Every removable subgraph has a unique entry node and

a unique exit node. The first step is to search through the

flow graph to find all pairs of nodes that might constitute the

entry node and the exit node of a removable subgraph. This is
done by examining the dominator tree and the subordinate tree

of the flow graph. The concept of dominator and subordinate is

discussed in detail in Section 3.

Step 2. For each pair found in Step 1, determine the subgraph
between the two nodes. The subgraph consists of nodes that are

dominated by the entry node and have the exit node as a sub-

ordinate. Discard all subgraphs consisting of a single node.

The next 3 steps eliminate subgraphs with illegal branches. More-
over, Step I above rules out the following cases: branching out of the sub-

graph to a node that Is not an ancestor of the entry node, and branching into

the subgraph from a node that is not a descendant of the exit node from

consideration.

Step 3. If the subgraph branches at the exit node to more than

one outside node, eliminate the subgraph from consideration.

Step 4. Eliminate the subgraph if it can be entered from a

descendant node of thoý exit node. This step takes care of

backward branching Into the subgraph.
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Step 5. Eliminate the subgraph if there is an exit from the

subgraph to an ancestor node of the entry node. This step

takes care of backward branching out of the subgraph.

Step 6. Compute the reduced complexity measure. Let v be the

complexity measure of the original flow graph. Suppose a re-

movable subgraph is replaced by a node, then the complexity v

is reduced by (e - n + 1), where n is the number of the nodes

in the subgraph and e is the number of edges. In other words,

if red v is the reduced complexity, then

red v = v - (e - n + 1).

The flow graph shown in Figure 1 is used to illustrate the above procedure.

This graph has 9 nodes, with node 1 as the initial node and node 9 as the
terminal node.

Figure 1. Flow Graph
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Applying Step 1 to the above example produces the following pairs of

nodes: (1,2), (1,3), (2,3), (2,9), (3,9) :nd (5,8). In addition, all pairs of

the form (n,n) are also produced (it is possible that the entry node and exit

node coincide, for example, a loop).

At Step 2, following subgraphs are produced: (<a,b> denotes the

subgraph between node a and node b.)

<1,2> : nodes 1 and 2

<1,3> : nodes 1, 2 and 3

<2,3> : nodes 2 and 3

<2,9> : nodes 2, 3, 4, 5, 6, 7, 8 and 9

<3,9> : nodes 3, 4, 5, 6, 7, 8 and 9

<5,8> : nodes 5, 6, 7 and 8

Subgraphs of the form <n,n> are eliminated since they are all single node

graphs. Let us make some comments on each of these subgraphs.

<1,2> : there is a backward branch from node 4 into it

<1,3> : branches to nodes 4 and 5 at the exit node (node 3)

<2,3> : same as above

<2,9> : qualified as a removable subgraph

<3,9> : there is a backward branch out of the subgraph to node 2

<5,8> : qualified as a removable subgraph

<1,3> and <2,3> are eliminated at Step 3, <1,2> is eliminated at

Step 4 and <3,9> at Step 5.

Suppose that the subgraph <5,8> is replaced by a single node. This

subgraph has 5 edges and 4 nodes. Therefore, the complexity of the procedure

in Figure 1 is reduced by 2 - 5 - 4 + 1.
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3.0 DETAILED DESCRIPTION OF THE METHOD

In this section, the details of the approach outlined above are

described. The concepts that are crucial to an algorithm are presented.

3.1 Depth-First Ordering of a Flow Graph

Most of our algorithms involve searching the nodes of the flow

graph. The way the nodes in a flow graph are labeled is quite arbitrary.

However, when these nodes are ordered in the 'depthfirst' fashion, a lot of

redundant search can be avoided. In this section, the depth-first search and

the depth-first ordering of a flow graph is described.

The depth-first search starts at the initial node. At the beginning,

all nodes are marked unvisited except the initial node. At each step, down-

ward search from the current node is attempted. If there is any unvisited

child node, the child node is marked visited and is chosen as the new current

node, and the search proceeds as before. If the downward search is impossible

(i.e., if the current node has no unvisited child nodes or no child nodes at

all), the search returns to the parent node. The parent node becomes the

curretit node and another downward search begins. The search stops when no

downward search from the initial node is possible.

For example, consider the graph of Figure 1. The order in which the

nodes are visited using depth-first search Is as follows:

1, 2, 3, 4, 9, 4, 3, 5, 6, 8, 6, 5, 7, 5, 3, 2, 1

The search moves downwards first. It turns upwards at node 9. Downward search
is attempted at node 4 and fails. The search goes back one more step to node

3 and turns downwards. It turns upwards again at node 8, downwards at node 5,

upwards at node 7, and ends at node 1. The reverse of the order in which the

nodes are last visited is called the depth-First ordering of the flow graph.

The depth-first ordering of the above example is

1, 2, 3, 5, 7, 6, 8, 4, 9
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A general algorithm for performing the depth-first search of a flow

graph starting at an arbitrary node is given in Section 4.

3.2 Dominators and Subordinates

A discussion of the relationship between the entry node and the exit

node of a removable subgraph is presented. The relationship may be .haracter-

ized in terms of 'dominator' and 'subordinate' nodes.

Consider two nodes of a flow graph, say node i and node J. Node i

is said to dominate node j if every path from the initial node to node j

passes through node i. For example, in the flow graph of Figure 1, node 3

dominates node 8, On the other hand, node 8 is not dominated by node 6. The

domination relation is transitive: if node i dominates node j and node j

dominates node k then node i dominates node k. By definition, every node

dominates itself, and is dominated by the initial node. In Section 4 we give

an algorithm for constructing the tible of dominators.

The opposite concept of domination is subordination. Node j is a

subordinate of node i if every path from node i to the terminal node passes

through node j. For the flow graph of Figure 1, node 8 is a subordinate of

node 6, but not of node 3.

Consider a removable subgraph. Since it has a unique entry node, the

entry node dominates every nole in the subgraph. In particular, it dcminates

the exit node. Similarly, the exit node is a subordinate of the entry node.

The first step of our procedure is to search all pairs <a,b> and select those

with the property that node a is a domirator of node b and node b is a sub-

ordinate of node a.

Take the flow graph of Figure 1 as an example. It can be seen that

node 5 dominates node 8 and node 8 is a subordinate of node 5. Ther-efore

<5,8> Is a qualified pair. On the other hand, although -,ode 3 dominates node

8, node 8 is not a subordinate of node 3. Therefore, we can disregard the

pair <3,8>.
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A separate algorithm for finding subordinates is not necessary. In

fact, if we reverse all arrows in the original flow graph and consider the
.'--inal node as the initial node and vise versa, then node j is a sub-

ordinate of node i in the original flow graph if and only if node j is a
d rinator of node i in the reversed graph. By applying the dominator algor-

itý"r to the reversed flow graph, the table of subordinates can be obtained.

3.3 The Subgraph Between Two Nodes

Suppose node a is a dominator of node b and node b is a subordinate
of node a. Therefore, the portion of the flow graph consisting of the nodes

that are dominated by node a and have node b as a subordinate as the subgraph

between node a and node b may be removed. For simplicity, one can denote the

subgraph by <a,b> in the following. Using the tables of dominators and sub-

ordinates, one can determine the subgraph easily.

Consider the flow graph of Figure 1. As an example, the subgraphs

-0 '5,8> and <2,9> are determined.

Nodes that are dominated by node 5 are: 5, 6, 7 and 8.

Nodes of which node 8 is a subordinate are: 5, 6, 7 and 8.
Therefore <5,8> consists of nodes 5, 6, 7 and 8.

Nodes that are dominated by node 2 are: 2, 3, 4, 5, 6, 7, 8 and 9.
Node 9 is a subordinate of every node in the graph.

Therefore <2,9> consists of nodes 2, 3, 4, 5, 6, 7, 8 and 9.

3.4 Branch at Exit Node

By comparing the subgraph against the set of child nodes of the exit

node, one determines whether the subgraph branches to more than one outside

node when exiting. For example, consider the subgraph <5,8> in Figure 1. The

subgraph consists of nodes 5, 6, 7, and 8. The exit node, node 8, has two
child nodes: nodes 7 and 9. Since node 7 is in the subgraph, the subgraph

I

exits to a unique node, namely node 9. On the other hand, subgraph <1,3>
branches to nodes 4 and 5.
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3.5 Illegal Branches Into the Subgraph

Suppose there is a branch into a subgraph <a,b> from an outsice

node, say node c. Then node c is necessarily a descendant of node b. Other-

wise there is a path from the initial node to node c to node b bypassing node

a, i.e. node a does not dominate node b.

Therefore, to check that there are no illegal branches into a sub-

graph <a,b>, one checks that none of the descendants of node b has a child

node in <a,b>. This can be done by looking up the ancestors-descendants

table.

3.6 Illegal Branches Out of the Subgraph

Similarly, if there is a branch out of a subgraph <a,b> to an

outside node, this outside node must be an ancestor of node a. This is

because node b is a subordinate of node a.

Again the illegal branches out of a subgraph <a,b> can be detected

by looking up the ancestor-descendant table, checking whether any of the

ancestors of node a is a child node of some node in the subgraph.

3.7 Rediction of Complexity Measure

Suppose a removable subgraph is replaced by a node, then the number
of edges in the original graph is reduced by the number of edges in the

subgraph, e, and the number of nodes is reduced by (n - 1), where n is the

number of nodes in the subgraph. Since the complexity measure is defined as

(# of edges) - (# of nodes) + 2,

the complexity is reduced by e - n + 1, which is I less than the complexity

of the removable subgraph.
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4.0 PDL FOR COMI!EXITY REDUCTION

Routine CMPXRED ... complexity measure reduction routine

... This routine accepts a flow graph as input and returns to the
... calling program the reduction in complexity when removable
... subgraphs are condensed into single nodes. The difference

between McCabe's complexity measure and this return value is
McCabe's essential complexity of the flow graph. The routine
also outputs the list of the removed subgraphs together with
their complexity measure.

... generate data for later references

CALL GENO .... generate descendant tree of the input flow graph
.... reverse input flow graph
.... reverse arrows in the graph

CALL OFORD with input flow graph as argument
.... arrange nodes in depth-first order

CALL OFORD with reversed graph as argument
.... arrange nodes in reverse depth-first order

CALL DOMINATOR with input flow graph as argument
.... generate dominator tree of the flow graph

CALL DOMINATOR with reversed graph as argument
q.... enerate subordinate tree of the flow graph

... initialization

clear CONDEMNLIST
.... this list accumulate nodes belonging to removed
.... subgraphs

set REDINCMPX to 0
.... no reduction in complexity

C)



Search for removablp subgraphs. Pairs of nodes (node a, node b)
are searched in the following fashion: node b in the reverse
depth-first order, and for a fixed b, node a is searched in the
depth-first order. If the subgraph between node a and node b
is removable, the subgraph is listed in the output and is
included in the CONDEMN LIST. Nodes in the CONDEMNLIST are
skipped over in our search.

DO for each node, in the reversed depth-first order
take this node as EXIT NODE
IF EXIT NODE is not in the CONDEMN LIST
THEN - .... ge-t the entry node

DO for each node, in the depth-first order
take this node as ENTRY NODE
IF ENTRY NODE is the inTtial node AND -

EXIT-NODE is the terminal node
THEN

CYCLE .... not interested
ENDIF
IF ENTRYNODE is not in the CONDEMNLIST
THEN

IF ENTRY NODE dominates EXIT NODE AND -
EXIT-NODE is subordinate-to ENTRYNODE

THEN
generate SUBGRAPH determined by two nodes

.... consists of nodes dominated by

.... ENTRY NODE and have EXITNODE

.... as a subordinate
IF SUBGRAPH branches to more than one outside node
THEN

CYCLE .... subgraph not removable
ENDIF
IF there is a branch into SUBGRAPH fROm a -

descendant node of EXITNODE
THEN

CYCLE .... subgraph not removable
ENDIF
IF SUBGRAPH branches to an ancestor node of -

ENTRYNODETHEN

CYCLE .... subgraph not removable
ENDIF
compute cmpx(SUBGRAPH), the complexity of SUBGRAPH
output SUBGRAPH and its complexity
RED IN CMPX = RED IN CMPX + cmpx(SUBGRAPH) - I
incTude SUBGRAPH Tn CONDEMN LIST

ENDIF
ENDIF

EN0DO
ENDIF

ENODO
RETURN REDINCMPX
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DETERMINATION OF HALSTEAD'S SOFTWARE SCIENCE METRICS

1.0 INTRODUCTION

Halstead theorized a method of analyzing computer language imple-

mented algorithms by evaluating the static expressions that make up the
algorithms. By identifying the operators and operands of the expressions and
the number of times each is used, he defined measurable entities which serve
to evaluate the complexity and quality of the algorithm's implementation.

Furthermore these entities are general enough to be applicable to various

computer languages. Some of these are:

N - Program Length

V - Program Volume

L - Program Level

V* - Program Potential Volume

D - Difficulty

E - Effort

The next section explains in more detail the derivation and meaning

of the above measures. Section 3 outlines one programming approach for
gathering data for evaluation by Halstead's metrics. The fourth section

contains brief PDL to assist in program creation.



2.0 HALSTEAD'S METRICS

All Halstead's metrics can be defined by determining the operators

and operands used in the module under test and keeping track of how often

they are used in executable statements of the module. Operators are defined

as any symbol or keyword which specifies a specific algorithmic action.

Operands are defined as any symbol which represents data.

Some examples of operators:

goto *

+ if .and. begin .. end

Some examples of operands:

SUM 500 1.73 "word"

The following variables represent information obtained from the

module under evaluation by monitoring operand and operator usage, which form

the basis for determining Halstead's metrics.

n1 = number of unique operatiors occurring in the code

n2 = number of unique operands

NI = total usage of all operators

N2 = total usage of all operands

The next sections define Halstead's metrics in terms of the above

variables.

2.1 Program Length - N

According to Halstead, the length of a program is the total number

of times each operator and operand is used.

N = NI + N2
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2.2 Program Volume - V

This represents the size of the program in terms of bits. It is the

length multiplied by the number of bits needed to encode the implementation's

vocabulary. The vocabulary is the total number of distinct operators and

operands appearing in the code.

V = N log2 (n1 + n2)

2.3 Prog,.am Level - L

The values L can take are <= 1, with a value of 1 meaning that the

program implements the algorithm in the most optimal and easily understood

manner. It is a good indicator of a program's propensity for error and ease

of underszanding.

L (2x n2)/(nl x N2)

2.4 Potential Volume - V*

The potential volume of a program represents the minimal and most

concise form the algorithm for which it implements can take.

v* = (L)(V)

2.5 Difficulty - D

Measures the average number of elementary mental discriminations

required for each mental comparison needed to generate a program.

D = IlL

2.6 Effort - E

E is the total number of elementary mental discriminations which

were needed to generate a given program.

E 2 (V)(D) 2 (V)/(L)
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3.0 PROGRAMMING APPROACH

The program to determine Halstead's complexity metrics shall be re-

ferred to as 'program analyzer' for the remainder of this text. Two sources

of information will be required as input for the program analyzer. The first

is the source code to be evaluated. The Fecond is the set of operators parti-

cular to the language for which the program to be examined is written in.

The program to be evaluated will be scanned module per module, line per line

for operators and operands. Each module therefore, will have its own set of

complexity metrics associated with it for which the program analyzer will

determine.

Each line of code will be scanned and each symbol that makes up the

line extracted. These symbolr or 'tokens' are keywords, such as 00 or IF, or

identifiers, such as X or NUM, or operators such as < or +, and punctuation

symbols such as commas or parenthesis. The following logic will apply to

every token of the module to be analyzed:

If the token is an operator, it will be placed in an operator table

only if that operator has not yet been entered. Also, an operator count

variable will be incremented. If the token is an operand, -ill be placed

in an operand table only if that operator has not yet been entered. An

operand count variable will also be incrementeJd.

After the module has been completely scanned and all of its tokens

examined, nl, n2, Ni, and N2 will be determined. The length of the operator

table will define ni. The length of the operand table will define n2. N1 will

be equal to the value of the operator co,:nt variable. N2 will be equal to the

operand count value. Using tnese values, Halstead's various metrics will be

computed and a report output.



4.0 DETAILED LOGIC

InitializeTables(operatortab, operand tab )
Read operators

optab size = 0

opertab size = 0

operatorcount 0
operand count = 0
Dowhile not EOF

Gettoken( : token)

If token is an operator Then

Begin

If token not in operatortab Then

Begin

optab size = optabsize + I

operator tab( optab-size ) token

End

operatorcount = operatorcount + 1

End

If token is an operand Then

Begin
If token nct in operand tab Then

Begin

opertabsize = opertab-size + 1
operandtab( opertab-size ) token

End
operand-count = operand count + 1

End

Enddo

n1 = optab size

n2 x opertab-size

NI = operator count

N2 = operand count

Calculate_Metrics( n1, n2, Ni, N2 N, V, L, V*, D, E
Print_Report(N, V, L, V*, D, E )

End
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